| Module designation | Greenhouse Construction and Microclimate | |---|---| | Semester(s) in which the module is taught | 7 th | | Person responsible for the module | Ir. Yohannes C Ginting, M.S | | Language | Indonesian language | | Relation to curriculum | elective | | Teaching methods | Lectures (100 minutes) Practicum sessions (170 minutes) | | Workload (incl. contact hours, self-study hours) | Contact hours: 14 weeks x 100 minutes Structured learning: 14 weeks x 120 minutes Independent study: 14 weeks x 120 minutes Practicum sessions: 14 weeks x 170 minutes | | Credit points | 3 (2-1) CP or 4.76 (ECTS)
((14 weeks x 100 minutes) + (14 weeks x 120 minutes) +
(14 weeks x 120 minutes) + (14 weeks x 170 minutes)) :
60 minutes/hour
= 119 hours : 25 study hours/ECTS
= 4.76 (ECTS) | | Required and recommended prerequisites for joining the module | - | | Module objectives/intended learning outcomes | Students are able to apply the basic concepts and principles of cultivation technology and the development of sustainable agriculture technology Students are able to identify, formulate, solve problems, and apply plant science, plant protection, soil science, socio-economic agriculture, and plant production engineering principles that are oriented towards good agricultural practices (GAP) Students are able to plan, design, implement and develop plant production with the latest and environmentally friendly technology creatively and innovatively | | Content | Greenhouse construction and design, plant microclimate, microclimate characterization in greenhouses, microenvironmental influences on plantings, control systems, automation and integration of monitoring of environmental factors, plant management in greenhouses | | Examination forms | oral presentation, essay | | Study and examination requirements | Participants are evaluated based on their performance in class (lectures) (70%) and lab (practicum) (30%). | |------------------------------------|--| | | Performance in theory (100%): Mid Exam (20%) Final Exam (20%) Assignments (40%) Class participation (10%) Individual quiz (10%) Performance in practicum (100%): Practicum exam (30%) Pre-test or post-test (10%) Experiment reports (60%) | | Reading list | Collier, K. 2022. Greenhouse Gardening for a Sustainable Future.
Independently published. 189p Mefferd, A. 2017. The Greenhouse and Hoophouse Grower's
Handbook. Chelsea Green Publishing. 288p. Reen, G. 2022. Greenhouse Gardening: 3 In 1: Greenhouse, Raised
Bed Gardening and Companion Planting To Grow Organic
Vegetables And Plants All-Year-Round. Independently published.
199p Suhardiyanto, H. 2009. Teknologi Rumah Tanaman untuk Iklim
Tropika Basah Pemodelan dan Pengendalian Lingkungan. IPB Press
115p. |