| Module designation | Basic Chemistry for Agriculture | |---|--| | Semester(s) in which the module is taught | 1 st | | Person responsible for the module | Prof. Dr. Dwi Hapsoro, M.Sc. | | Language | Indonesian language | | Relation to curriculum | Compulsory | | Teaching methods | Lectures (100 minutes) Practicum sessions (170 minutes) | | Workload (incl. contact hours, self-study hours) | Contact hours: 14 weeks x 100 minutes Structured learning: 14 weeks x 120 minutes Independent study: 14 weeks x 120 minutes Practicum sessions: 14 weeks x 170 minutes | | Credit points | 3 (2-1) CP or 4.76 (ECTS)
((14 weeks x 100 minutes) + (14 weeks x 120 minutes) +
(14 weeks x 120 minutes) + (14 weeks x 170 minutes)) :
60 minutes/hour
= 119 hours : 25 study hours/ECTS
= 4.76 (ECTS) | | Required and recommended prerequisites for joining the module | - | | Module objectives/intended learning outcomes | Students are able to apply the basic concepts and principles of
cultivation technology and the development of sustainable
agriculture technology | | Content | Basic Chemistry course is a 3 (2-1) credit course. This course presents an understanding of international units, molecules/objects, changes in molecules/objects; properties of atoms/elements in a periodic system, chemical bonds, compounds, and the structure of atoms/elements in molecules/objects; reaction equation equilibrium, solubility, and precipitation reactions; reaction kinetics (speed reactions, catalysts) and molecular movement, laws of thermodynamics; system chemistry of water, acids, bases, salts and buffer solutions; Electrical chemistry (oxidation-reduction); Basic organic chemistry (chain long-chain carbons and functional groups of organic compounds); nitrogen compounds, and lipids. | | Examination forms | oral presentation, essay | | Study and examination requirements | Participants are evaluated based on their performance in class (lectures) (70%) and lab (practicum) (30%). | |------------------------------------|--| | | Performance in theory (100%): Mid Exam (20%) Final Exam (20%) Assignments (40%) Class participation (10%) Individual quiz (10%) | | | Performance in practicum (100%): Practicum exam (30%) Pre-test or post-test (10%) Experiment reports (60%) | | Reading list | Chang, Raymond. 2010. Chemistry. 10th ed. McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. 1170p. Chang, Raymond. 2010. Chemistry. Student Solution Manual. 10th ed. McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. 698p. Petrucci, R.H., F. G. Herring, J.D. Madura, and C. Bissonnette. 2011. General Chemistry: Principles and Modern Applications. Pearson Canada Inc., Toronto, Ontario. 1427p. Brown, T.L., H. E. LeMay, B.E. Bursten, C.J. Murphy, Patrick M. Woodward, Matthew W. Stoltzfus. 2018. Chemistry The Central Science. 14th Ed. Pearson Education Limited. Harlow CM17 9NA United Kingdom. 1252p. Topping, J.J. K.J. Denniston, and R.E Caret. 2006. General, Organic, and Biochemistry. Mc Graw Hill Education New York, USA. 87 |