| Module designation | Agricultural Biotechnology | |---|---| | Semester(s) in which the module is taught | 6 th | | Person responsible for the module | Fitri Yelli, S.P., M.Si., Ph.D | | Language | Indonesian language | | Relation to curriculum | Compulsory | | Teaching methods | Lectures (100 minutes) Practicum sessions (170 minutes) | | Workload (incl. contact hours, self-study hours) | Contact hours: 14 weeks x 100 minutes Structured learning: 14 weeks x 120 minutes Independent study: 14 weeks x 120 minutes Practicum sessions: 14 weeks x 170 minutes | | Credit points | 3 (2-1) CP or 4.76 (ECTS) ((14 weeks x 100 minutes) + (14 weeks x 120 minutes) + (14 weeks x 120 minutes) + (14 weeks x 170 minutes)): 60 minutes/hour = 119 hours : 25 study hours/ECTS = 4.76 (ECTS) | | Required and recommended prerequisites for joining the module | - | | Module objectives/intended learning outcomes | Students are able to have devotion to Almighty God, demonstrate a religious attitude, and uphold human values in carrying out their duties based on religion, morals, and ethics Students are able to identify, formulate, solve problems, and apply plant science, plant protection, soil science, socio-economic agriculture, and plant production engineering principles that are oriented towards good agricultural practices (GAP) Students are able to plan, design, implement and develop plant production with the latest and environmentally friendly technology creatively and innovatively | | Content | Definition of biotechnology, modern vs traditional biotechnology, benefits biotechnology in agriculture, Plant Genetic Engineering, Genetic Transformation, Tissue culture, biofertilizer, biopesticides, fermentation, Plant Biotechnology Product Regulation | | Examination forms | oral presentation, essay | | Study and examination requirements | Participants are evaluated based on their performance in class | |------------------------------------|---| | | (lectures) (70%) and lab (practicum) (30%). | | | Performance in theory (100%): | | | Mid Exam (20%) | | | Final Exam (20%) | | | Assignments (40%) | | | Class participation (10%) | | | Individual quiz (10%) | | | | | | Performance in practicum (100%): | | | Practicum exam (30%) | | | Pre-test or post-test (10%) | | | Experiment reports (60%) | | Reading list | 1. Hee-Jong Koh • Suk-Yoon Kwon Michael Thomson. 2015. Current | | | Technologies in Plant Molecular Breeding- A Guide Book of Plant | | | Molecular Breeding for Researchers Springer. 360 pages | | | 2. Q.Y. Shu, B.P.Forster, H.Nakagawa. 2011. Plant Mutation Breeding | | | and Biotechnology. International Atomic Energy Agency (IAEA). | | | 595 pages | | | 3. Utomo. S.D. 2012. Pemuliaan Tanaman Menggunakan Rekayasa | | | Genetik. Lembaga Penelitian Universitas Lampung. 144 pages. | | | 4. Bir Bahadur · Manchikatla Venkat Rajam Leela Sahijram · K.V. | | | Krishnamurthy. 2015. Plant Biology and Biotechnology. Volume II. | | | Springer India. 780 pages | | | 5. Karl-Hermann Neumann • Ashwani Kumar Jafargholi Imani. 2009. | | | Plant Cell and Tissue Culture - A Tool in Biotechnology. Basic and | | | Application. Springer Germany. 341 pages |